Skip to main content
Version: 3.7 (unsupported)

Getting Started with Helm Charts (Monitoring using Prometheus Operator)

This document explains how to get started with Scalar products monitoring on Kubernetes using Prometheus Operator (kube-prometheus-stack). Here, we assume that you already have a Mac or Linux environment for testing. We use Minikube in this document, but the steps we will show should work in any Kubernetes cluster.

What we create

We will deploy the following components on a Kubernetes cluster as follows.

+--------------------------------------------------------------------------------------------------+
| +------------------------------------------------------+ +-----------------+ |
| | kube-prometheus-stack | | Scalar Products | |
| | | | | |
| | +--------------+ +--------------+ +--------------+ | -----(Monitor)----> | +-----------+ | |
| | | Prometheus | | Alertmanager | | Grafana | | | | ScalarDB | | |
| | +-------+------+ +------+-------+ +------+-------+ | | +-----------+ | |
| | | | | | | +-----------+ | |
| | +----------------+-----------------+ | | | ScalarDL | | |
| | | | | +-----------+ | |
| +--------------------------+---------------------------+ +-----------------+ |
| | |
| | Kubernetes |
+----------------------------+---------------------------------------------------------------------+
| <- expose to localhost (127.0.0.1) or use load balancer etc to access
|
(Access Dashboard through HTTP)
|
+----+----+
| Browser |
+---------+

Step 1. Start a Kubernetes cluster

First, you need to prepare a Kubernetes cluster. If you use a minikube environment, please refer to the Getting Started with Scalar Helm Charts. If you have already started a Kubernetes cluster, you can skip this step.

Step 2. Prepare a custom values file

  1. Save the sample file scalar-prometheus-custom-values.yaml for kube-prometheus-stack.

  2. Add custom values in the scalar-prometheus-custom-values.yaml as follows.

    • settings
      • prometheus.service.type to LoadBalancer
      • alertmanager.service.type to LoadBalancer
      • grafana.service.type to LoadBalancer
      • grafana.service.port to 3000
    • Example
      alertmanager:

      service:
      type: LoadBalancer

      ...

      grafana:

      service:
      type: LoadBalancer
      port: 3000

      ...

      prometheus:

      service:
      type: LoadBalancer

      ...
    • Note:
      • If you want to customize the Prometheus Operator deployment by using Helm Charts, you'll need to set the following configurations to monitor Scalar products:

        • Set serviceMonitorSelectorNilUsesHelmValues and ruleSelectorNilUsesHelmValues to false (true by default) so that Prometheus Operator can detect ServiceMonitor and PrometheusRule for Scalar products.
      • If you want to use Scalar Manager, you'll need to set the following configurations to enable Scalar Manager to collect CPU and memory resources:

        • Set kubeStateMetrics.enabled, nodeExporter.enabled, and kubelet.enabled to true.
      • If you want to use Scalar Manager, you'll need to set the following configurations to enable Scalar Manager to embed Grafana:

        • Set grafana.ini.security.allow_embedding and grafana.ini.auth.anonymous.enabled to true.
        • Set grafana.ini.auth.anonymous.org_name to the organization you are using. If you're using the sample custom values, the value is Main Org..
        • Set grafana.ini.auth.anonymous.org_role to Editor.

Step 3. Deploy kube-prometheus-stack

  1. Add the prometheus-community helm repository.

    helm repo add prometheus-community https://prometheus-community.github.io/helm-charts
  2. Create a namespace monitoring on the Kubernetes.

    kubectl create namespace monitoring
  3. Deploy the kube-prometheus-stack.

    helm install scalar-monitoring prometheus-community/kube-prometheus-stack -n monitoring -f scalar-prometheus-custom-values.yaml

Step 4. Deploy (or Upgrade) Scalar products using Helm Charts

  1. To enable Prometheus monitoring of Scalar products, set true to the following configurations in the custom values file.

    • Configurations
      • *.prometheusRule.enabled
      • *.grafanaDashboard.enabled
      • *.serviceMonitor.enabled
    • Sample configuration files
      • ScalarDB (scalardb-custom-values.yaml)
        envoy:
        prometheusRule:
        enabled: true
        grafanaDashboard:
        enabled: true
        serviceMonitor:
        enabled: true

        scalardb:
        prometheusRule:
        enabled: true
        grafanaDashboard:
        enabled: true
        serviceMonitor:
        enabled: true
      • ScalarDL Ledger (scalardl-ledger-custom-values.yaml)
        envoy:
        prometheusRule:
        enabled: true
        grafanaDashboard:
        enabled: true
        serviceMonitor:
        enabled: true

        ledger:
        prometheusRule:
        enabled: true
        grafanaDashboard:
        enabled: true
        serviceMonitor:
        enabled: true
      • ScalarDL Auditor (scalardl-auditor-custom-values.yaml)
        envoy:
        prometheusRule:
        enabled: true
        grafanaDashboard:
        enabled: true
        serviceMonitor:
        enabled: true

        auditor:
        prometheusRule:
        enabled: true
        grafanaDashboard:
        enabled: true
        serviceMonitor:
        enabled: true
  2. Deploy (or Upgrade) Scalar products using Helm Charts with the above custom values file.

    • Examples
      • ScalarDB
        helm install scalardb scalar-labs/scalardb -f ./scalardb-custom-values.yaml
        helm upgrade scalardb scalar-labs/scalardb -f ./scalardb-custom-values.yaml
      • ScalarDL Ledger
        helm install scalardl-ledger scalar-labs/scalardl -f ./scalardl-ledger-custom-values.yaml
        helm upgrade scalardl-ledger scalar-labs/scalardl -f ./scalardl-ledger-custom-values.yaml
      • ScalarDL Auditor
        helm install scalardl-auditor scalar-labs/scalardl-audit -f ./scalardl-auditor-custom-values.yaml
        helm upgrade scalardl-auditor scalar-labs/scalardl-audit -f ./scalardl-auditor-custom-values.yaml

Step 5. Access Dashboards

If you use minikube

  1. To expose each service resource as your localhost (127.0.0.1), open another terminal, and run the minikube tunnel command.

    minikube tunnel

    After running the minikube tunnel command, you can see the EXTERNAL-IP of each service resource as 127.0.0.1.

    kubectl get svc -n monitoring scalar-monitoring-kube-pro-prometheus scalar-monitoring-kube-pro-alertmanager scalar-monitoring-grafana

    [Command execution result]

    NAME                                      TYPE           CLUSTER-IP     EXTERNAL-IP   PORT(S)          AGE
    scalar-monitoring-kube-pro-prometheus LoadBalancer 10.98.11.12 127.0.0.1 9090:30550/TCP 26m
    scalar-monitoring-kube-pro-alertmanager LoadBalancer 10.98.151.66 127.0.0.1 9093:31684/TCP 26m
    scalar-monitoring-grafana LoadBalancer 10.103.19.4 127.0.0.1 3000:31948/TCP 26m
  2. Access each Dashboard.

    • Prometheus
      http://localhost:9090/
    • Alertmanager
      http://localhost:9093/
    • Grafana
      http://localhost:3000/
      • Note:
        • You can see the user and password of Grafana as follows.
          • user
            kubectl get secrets scalar-monitoring-grafana -n monitoring -o jsonpath='{.data.admin-user}' | base64 -d
          • password
            kubectl get secrets scalar-monitoring-grafana -n monitoring -o jsonpath='{.data.admin-password}' | base64 -d

If you use other Kubernetes than minikube

If you use a Kubernetes cluster other than minikube, you need to access the LoadBalancer service according to the manner of each Kubernetes cluster. For example, using a Load Balancer provided by cloud service or the kubectl port-forward command.

Step 6. Delete all resources

After completing the Monitoring tests on the Kubernetes cluster, remove all resources.

  1. Terminate the minikube tunnel command. (If you use minikube)

    Ctrl + C
  2. Uninstall kube-prometheus-stack.

    helm uninstall scalar-monitoring -n monitoring
  3. Delete minikube. (Optional / If you use minikube)

    minikube delete --all
    • Note:
      • If you deploy the ScalarDB or ScalarDL, you need to remove them before deleting minikube.